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Abstract

We found Fuchs–Garnier pairs in 3×3 matrices for the first and second Painlevé
equations which are linear in the spectral parameter. As an application of our
pairs for the second Painlevé equation we use the generalized Laplace transform
to derive an invertible integral transformation relating two of its Fuchs–Garnier
pairs in 2 × 2 matrices with different singularity structures, namely, the pair
due to Jimbo and Miwa and that found by Harnad, Tracy and Widom. Together
with the certain other transformations it allows us to relate all known 2 × 2
matrix Fuchs–Garnier pairs for the second Painlevé equation to the original
Garnier pair.

PACS numbers: 02.30.Gp, 02.30.Hq, 02.30.Ik
Mathematics Subject Classification: 33E17, 34M25, 34M55

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phrase ‘linearization of the Painlevé equations’ is widely understood to refer to the fact
that the nonlinear Painlevé equations can be associated with certain overdetermined systems
of linear differential equations in two complex variables. The linear systems may be written as
scalar or matrix equations and are typically referred to as Lax pairs for the Painlevé equations.
In our previous paper [10], we suggested calling these systems the ‘Fuchs–Garnier’ pairs for
the Painlevé equations to pay tribute to the two scientists who first introduced these systems
in the beginning of the twentieth century. In the period since Fuchs and Garnier first wrote
their (scalar) pairs the list has expanded so that now, for most of the Painlevé equations,
there are several different Fuchs–Garnier pairs associated with the same Painlevé equation3.
3 Actually most of the ‘new’ pairs appeared as similarity reductions of various Lax pairs for nonlinear partial
differential equations integrable via the inverse scattering transform method which explains why they are often
referred to as Lax pairs for the Painlevé equations.
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The different Fuchs–Garnier pairs for a given Painlevé equation may differ from each other
not only by simple gauge transformation but also by the matrix dimension and/or analytic
structure (the number and type of singular points). Our general belief is that all Fuchs–Garnier
pairs for a given Painlevé equation should be equivalent in the sense that there should exist
explicit transformations that map these pairs to each other. In many cases such transformations
are known; however, there are still several instances of different Fuchs–Garnier pairs whose
equivalence is expected but not yet established. The main goal of this work is to construct such
an explicit transformation between two Fuchs–Garnier pairs for the second Painlevé equation:

P2 :
d2y

dt2
= 2y3 + ty + α, (1.1)

where α ∈ C is a complex parameter. Both pairs were obtained in 1979–1980: one pair is due
to Flaschka and Newell [3] (FN-pair) and the other is due to Jimbo and Miwa [9] (JM2-pair).
The FN-pair was originally obtained as a similarity reduction of the Lax pair for the modified
KdV equation; the JM2-pair was originally obtained from the scalar pair of Garnier, although
it can also be obtained as a similarity reduction of the Lax pair for the nonlinear Schrödinger
equation.

The solution of the aforementioned problem associated with P2 is intimately connected
with the other central theme of this work, namely, the construction of the so-called secondary
linearized Fuchs–Garnier pairs for P2 and the first Painlevé equation:

P1 :
d2y

dt2
= 6y2 + t. (1.2)

The notion of secondary linearized Fuchs–Garnier pairs for the Painlevé equations was
introduced in our previous work [10] and refers to Fuchs–Garnier pairs which are linear
in the spectral parameter λ; see system (1.5) below. However, it is important to mention
that the question concerning a relation between the FN- and JM2- pairs was one of the main
motivations for both our works.

We recall that the matrix Fuchs–Garnier pairs for the Painlevé equations have the following
form:

dY

dλ
= A(λ, t)Y,

dY

dt
= U(λ, t)Y, (1.3)

where λ ∈ C is an auxiliary variable called the spectral parameter, and A(λ, t),U(λ, t) ∈
GL(N, C) are rational functions of λ and are analytic in t. Jimbo and Miwa [9] showed that
for all Painlevé equations such pairs exist in 2 × 2 matrices. The Frobenious compatibility
condition of system (1.3),

At − Uλ + [A,U] = 0, (1.4)

where [, ] is the usual matrix commutator, being imposed identically for all values of λ, is
equivalent to one of the Painlevé equations.

As is mentioned above Fuchs–Garnier pairs can be scalar and matrix. The scalar pairs
for P1 and P2 were obtained by Garnier [5]. All other scalar Fuchs–Garnier pairs that we
know in the literature are related to the Garnier pairs via simple transformations. The situation
with the matrix Fuchs–Garnier pairs for P1 is also fairly easy to summarize. The basic 2 × 2
matrix pair for P1 (JM1-pair) was found by Jimbo and Miwa [9]. It is straightforward to prove
that the JM1-pair is equivalent to the scalar pair obtained by Garnier. Moreover, the other
2 × 2 matrix pairs for P1 that can be found in the literature are related to the JM1-pair by
the Fabri [2, 8] and Schlesinger transformations [9] (in the other terminology via quadratic
RS-transformations [12]). As for the matrix Fuchs–Garnier pairs for P2 the situation is more
interesting. To the best of our knowledge all matrix pairs for P2 that were discussed so far in
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the literature are given in 2 × 2 matrices. There are three different matrix pairs: the FN- and
JM2-pairs mentioned already in the previous paragraph, and that obtained by Harnad, Tracy
and Widom [6] (HTW-pair). We give a detailed account of all these pairs in section 3. It is
straightforward to establish that the Fabri transformation maps the HTW-pair into the FN-pair
(see details in section 3) and that the JM2-pair is a matrix version of the scalar Garnier pair (see
appendix A). However, a direct link between the FN- (equivalently HTW-) and the JM2-pairs
is not that obvious; this link is one of the main matters of our paper.

Central to our investigation of this problem are the so-called secondary linearized Fuchs–
Garnier pairs, the technique that we began to develop in our previous work [10]. In that work,
we found the secondary linearized Fuchs–Garnier pairs in 3 × 3 matrices for the third, fourth
and fifth Painlevé equations. In this paper, we complete the list of the secondary linearized
pairs for the Painlevé equations by adding to it the pairs for P1 and P2. The secondary
linearized Fuchs–Garnier pair for the sixth Painlevé equation was known earlier due to Harnad
[7] (see also [14]).

Secondary linearization is here taken to mean presenting each of the Painlevé equations
in terms of a Fuchs–Garnier pair with an equation on the spectral parameter λ of the following
form:

(λB1(t) + B2(t))
d�

dλ
= (λB3(t) + B4(t))�, (1.5)

i.e., with coefficients linear with respect to λ. In [10], using the similarity reductions of
the Lax pair for the three-wave resonant interaction (3WRI) system, we obtained secondary
linearized Fuchs–Garnier pairs in 3 × 3 matrices for all the Painlevé equations except P1 and
P2. As there are no similarity reductions of the 3WRI system to P1 and P2, this approach
could not be used to obtain secondary linearized pairs for the latter equations. So in this paper
we complete a list of the secondary linearized Fuchs–Garnier pairs for the Painlevé equations.

The main advantage of the secondary linearized pairs is that the Laplace transform maps
them one into another without changing the matrix dimension of the corresponding Fuchs–
Garnier pairs. This property is lost for Fuchs–Garnier pairs which are rational functions
of the spectral parameter of degree more than 1. In this work, the fact that the matrix
dimension is not altered is the key to constructing an explicit link between the JM2- and the
FN-pairs for P2 since the two secondary linearized 3 × 3 matrix pairs that are related by the
generalized Laplace transform can be reduced independently to the different 2 × 2 matrix
pairs. The reduction of our secondary linearized 3 × 3 matrix pairs to the 2 × 2 matrix
Fuchs–Garnier pairs is done via two different mechanisms: (i) by a special normalization of
equation (1.5) and (ii) from a degeneracy that occurs under an application of the generalized
Laplace transform to equation (1.5). We call a secondary linearized Fuchs–Garnier pair
degenerate iff det

(
λB1(t) + B2(t)

) ≡ 0 for all λ ∈ C. The reader will see that, in the case of
P1 and P2, the generalized Laplace transform maps nondegenerate Fuchs–Garnier pairs into
degenerate ones.

In section 2, we present a nondegenerate secondary linearized Fuchs–Garnier pair for
P1 (JKT1-pair). We show that under the formal4 Laplace transform it maps to a degenerate
Fuchs–Garnier pair (dJKT1-pair). We then show that the dJKT1-pair is equivalent to the
JM1-pair, which is, in turn, a matrix form of the original Garnier pair, G1. Schematically,
the content of section 2 can be described by the graph shown in figure 1, where the vertices
represent the corresponding Fuchs–Garnier pairs, and the edges are invertible transformations
relating them.

4 We call a Laplace transform formal in case we do not specify its contour of integration.
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JKT1

Laplace

dJKT1 JM1 G1

Figure 1. The diagram of the Fuchs–Garnier pairs for P1 and mappings between them.

G2 JM2

JKT2

dJKT 1
2

Laplace

Laplace

dJKT 3
2

dJKT 2
2

HTW FN

Fabri

Figure 2. The commutative diagram of the Fuchs–Garnier pairs for P2 and corresponding
mappings.

The rest of the paper is devoted to P2. Schematically, its content can be presented by the
graph shown in figure 2. The vertices and the edges of the graph are different Fuchs–Garnier
pairs for P2 and the mappings between them, respectively. The vertices abbreviated as JKT
with sub- and superscripts denote 3 × 3 matrix Fuchs–Garnier pairs that we have constructed.
The subscript {2} means the pair for P2, the prefix d, as above, says that the corresponding pair
is degenerate, and the superscripts {1, 2, 3} label different degenerate Fuchs–Garnier pairs.
The graph is commutative and all mappings are invertible. The edges without any name
correspond to the reduction transformation from the 3 × 3 to 2 × 2 matrix and the 2 × 2 matrix
to scalar Fuchs–Garnier pairs and their inverses. Our main result is the diagonal mapping
indicated by the red edge. It is obtained in two ways: as the composition of transformations
along the upper and lower roots connecting vertices JM2 and HTW. These compositions
coincide which proves the commutativity of our diagram.

This diagram is constructed in sections 3–5 and appendices appendix A and B.
In section 3, we recall the main subjects of our study—the 2 × 2 matrix Fuchs–Garnier

pairs for P2 due to Jimbo and Miwa (JM2-pair), Flaschka and Newell (FN-pair), and Harnad,
Tracy and Widom (HTW-pair). We also show that the Fabri transformation [2, 8], which
is natural to employ for the HTW-pair and is well known in asymptotic theory, maps the
HTW-pair to the FN-pair. This fact was earlier noted in [11]. Finally, we conclude this section
with a presentation of the main result of this paper, i.e., we give a direct invertible integral
transformation mapping the HTW-pair to the JM2-pair. Appendix A completes the general
overview of the 2 × 2 matrix pairs by showing a relation of the JM2-pair to the scalar Garnier
pair (G2-pair). Here we also consider one more Fuchs–Garnier pair for P2 in 2 × 2 matrices
obtained by Conte and Musette [1] (CM2-pair) and show how it can be mapped directly to the
JM2-pair without reference to the scalar G2-pair.

In section 4, we present two new 3×3 matrix secondary linearized Fuchs–Garnier pairs for
P2, one of which is nondegenerate, together with the corresponding integral transformation
between them and their reductions to the JM2- and HTW-pairs. Using these results we
construct a formal integral transform between the JM2- and HTW-pairs.
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In section 5, we present two other new 3 × 3 matrix secondary linearized Fuchs–Garnier
pairs for P2, different from those in section 4. Both pairs are degenerate and are related via
the generalized Laplace transform. As in the previous section, we construct transformations
relating these pairs to the JM2- and HTW-pairs and on this basis obtain exactly the same formal
integral transform between the latter pairs as in section 4.

Finally in appendix B, we show how to find a contour of integration in our integral
transformations which completes the proof of our main result.

2. Fuchs–Garnier pairs for P1

In subsection 2.1, we construct the Fuchs–Garnier pairs and corresponding mappings presented
by the graph in figure 1. In subsection 2.2, we discuss the Fabri-transformed JM1-pairs that
appeared in the literature and present a new and simpler version of the Fabri transformation.

2.1. Secondary linearization of P1

Proposition 2.1. Consider the following system of linear ODEs:

JKT1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d�

dμ
=

⎛
⎝μ

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ +

⎛
⎝−y −z −(4y2 + 2t)

0 y z

1/4 0 0

⎞
⎠

⎞
⎠ �

d�

dt
= 2

⎛
⎝μ

⎛
⎝0 0 −1

0 0 0
0 0 0

⎞
⎠ +

⎛
⎝ 0 −y −z

−1/4 0 −2y

0 −1/4 0

⎞
⎠

⎞
⎠ �,

(2.1)

where y = y(t) and z = z(t) are analytic functions of t. Then the compatibility condition
reads

dy

dt
= z,

dz

dt
= 6y2 + t, (2.2)

i.e. is equivalent to equation (1.2).

Proof. The straightforward check of the Frobenious compatibility condition (1.4)
with λ → μ. �

In our terminology this is a nondegenerate secondary linearized Fuchs–Garnier pair
for P1.

Let us make the generalized Laplace transform of the Fuchs–Garnier pair (2.1) with
respect to the variable μ,

�(μ, t) =
∫

L

eλμ�(λ, t) dλ, (2.3)

with such contour L chosen to make the certain off-integral terms vanish5. The result reads

dJKT1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ d�

dλ
=

⎛
⎝−λ

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝−y −z −(4y2 + 2t)

0 y z

1/4 0 0

⎞
⎠

⎞
⎠ �,

d�

dt
= 2

⎛
⎝λ

⎛
⎝0 −1 0

0 0 0
0 0 0

⎞
⎠ +

⎛
⎝ 0 0 0

−1/4 0 −2y

0 −1/4 0

⎞
⎠

⎞
⎠ �.

(2.4)

5 Here we do not discuss the choice of this contour, so that we leave this transformation at the formal level. The
notation is explained in more detail in appendix B, where the appropriate choice of contour for the case of P2 is given.
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In our terminology this is a degenerate Fuchs–Garnier pair. To formulate our next result we
recall the Fuchs–Garnier pair for P1 found by Jimbo and Miwa [9]:

JM1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dY

dλ
=

(
λ2

(
0 1
0 0

)
+ λ

(
0 y

4 0

)
+

( −z y2 + t
2

−4y z

))
Y,

dY

dt
=

(
λ

2

(
0 1
0 0

)
+

(
0 y

2 0

))
Y.

(2.5)

Proposition 2.2. The Fuchs–Garnier pair (2.4) is equivalent to the JM1-pair (2.5).

Proof. The third row of the λ-equation in system (2.4) gives the following relation between
the elements of the functions �:

�1 = 4λ�3.

Using this relation to eliminate �1 from system (2.4) and defining Y = (−�2/4,�3)
T we

find that Y solves the JM1-pair (2.5). �

We conclude this subsection by mentioning that if the vector solution to system (2.5) is
written as Y = (Y1, Y2)

T , then the function V = V (λ, t) defined as Y2 = √
λ − yV satisfies

the original Garnier pair for P1:

G1 :

⎧⎪⎪⎨
⎪⎪⎩

d2V

dλ2
=

(
3

4(λ − y)2
− y ′

λ − y
+ 4λ3 + 2tλ + (y ′)2 − 4y3 − 2ty

)
V,

dV

dt
= 1

2(λ − y)

dV

dλ
+

1

4(λ − y)2
V.

2.2. The Fabri-type transformation for the JM1-pair

Since the matrix coefficient of λ2 in the right-hand side of the JM1-pair (2.5) has zero
determinant and zero trace, it is standard in asymptotic theory to apply the Fabri-type
transformation [2, 8] λ = ζ 2 to ‘cure the defect’ at infinity. It was first applied to system
(2.5) by Jimbo and Miwa in the same work [9] where the JM1-pair was obtained (see p 437)
under the name of the ‘shearing’ transformation. As a result they obtain an equation (see
(C.5) in [9]) with an additional apparent Fuchsian singularity at the origin. Although this
does not cause any problems for the application of the isomonodromy deformation technique
in studying, say, asymptotics of P1,6 this form of the Fabri-transformed JM1-pair does create
problems in the application of the Riemann–Hilbert approach. This is due to the fact that the
corresponding connection matrix (the matrix connecting fundamental solutions at the singular
points zero and infinity) for this pair now depends on the solution of P1. This problem was first
identified by Fokas, Mugan and Zhou [4]. To correct this additional problem these authors
introduced one more gauge transformation depending on a spectral parameter, and thus they
produced another Fuchs–Garnier pair (FMZ-pair) for P1. The approach of [4] necessitated
the introduction of an additional function, v(t), which is related to the P1 function y(t) via the
Riccatti differential equation, iv′(t) − 2v2(t) = y(t). This function appeared in the FMZ-pair
because in the Riemann–Hilbert setting there appears an additional parameter in the connection
matrix which corresponds to the constant of integration in the Riccatti equation.

Here we show that there exists a Fabri-type transformation which is free of both problems
indicated in the previous paragraph: it does not have an additional Fuchsian singularity at

6 The monodromy matrix at the origin is just equal to −I , and thus does not depend on t.
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the origin like the original Fabri-transformed JM1-pair and the FMZ-pair. Our Fabri-type
transformation for the fundamental solutions of (2.5) reads

Y (λ, t) =
(

1 −ζ/2
0 1

)
Z(ζ, t), λ = ζ 2.

We find that our Fabri-type transformation maps the JM1-pair to the following one:

JM1/F :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dZ

dζ
=

(
4ζ 4

(
1 0
0 −1

)
+ ζ 3

(
0 4y

8 0

)
+ ζ 2

(−4y 2z

0 4y

)

+ ζ

(−2z 2y2 + t

−8y 2z

)
+

(
0 1/2
0 0

))
Z,

dZ

dt
=

(
ζ

(
1 0
0 −1

)
+

(
0 y

2 0

))
Z.

(2.6)

An important role in the study of the Fabri-transformed JM1-pairs is played by the so-
called σ1-symmetry of the fundamental solutions related to the reflection, ζ → −ζ . The latter
symmetry is not easy to observe by looking directly at our pair (2.6); however, a method of its
derivation suggests the following identity for the fundamental solutions:(

1 −ζ/2
0 1

)
Z(ζ ) = Y (λ) =

(
1 ζ/2
0 1

)
Z(−ζ )C, (2.7)

for some C ∈ SL(2, C). Thus, the σ1-symmetry for our pair reads

Z(−ζ ) =
(

1 −ζ

0 1

)
Z(ζ )C̃,

where clearly C̃ ∈ SL(2, C), and thus has nothing to do any more with the Pauli matrix σ1!.

3. The 2 × 2 matrix Fuchs–Garnier pairs for P2

The rest of the paper is devoted to P2. Henceforth, the notation y and z means solutions of
P2 (1.1) and equation P34 (see equation (3.3), below), respectively. Subsections 3.1–3.4 are
devoted to the review of the known results for the 2 × 2 matrix Fuchs–Garnier pairs for P2. In
subsection 3.5 we formulate the main result of the paper.

3.1. The Jimbo–Miwa pair

Jimbo and Miwa [9] give the following matrix version of the Fuchs–Garnier pair for P2:

JM2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dY

dλ
=

(
λ2

(
1 0
0 −1

)
+ λ

(
0 u

−2u−1z 0

)
+

(
z + t/2 −uy

−2u−1(yz + θ) −z − t/2

))
Y,

dY

dt
=

(
λ

2

(
1 0
0 −1

)
+

1

2

(
0 u

−2u−1z 0

))
Y.

(3.1)

The compatibility condition (1.4) for the JM2-pair (3.1) reads

du

dt
= −yu,

dy

dt
= y2 + z +

t

2
,

dz

dt
= −2yz − θ. (3.2)

Excluding the functions u and z from (3.2) we find that the function y satisfies P2 (1.1)
with α = 1

2 − θ .

7
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Excluding the functions u and y from (3.2) we find that the function z satisfies the
following second-order equation:

P34 :
d2z

dt2
= 1

2z

(dz

dt

)2
− 2z2 − tz − θ2

2z
, (3.3)

which, up to a scaling change of z and t, coincides with the 34th equation in the classical
Painlevé–Gambier list; see p 340 in [8].

For the convenience of the reader we present in appendix A a relation of the JM2-pair
with the original scalar Garnier pair (G2-pair) and a direct mapping of another 2 × 2 matrix
version of the G2-pair by Conte and Musette [1] (CM2-pair) to the JM2-pair.

3.2. The Flaschka–Newell pair

Flaschka and Newell [3] found the following Fuchs–Garnier pair for P2:

FN :

⎧⎪⎪⎨
⎪⎪⎩

dZ

dζ
=

(
−4iζ 2σ3 + 4yζσ1 − 2y ′σ2 − i(2y2 + t)σ3 − α

ζ
σ1

)
Z,

dZ

dt
= (−iζσ3 + yσ1)Z,

(3.4)

where ζ is the spectral parameter, t is the dynamical variable, prime denotes differentiation
with respect to t, and σ1, σ2, σ3 are the standard notation for the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The compatibility condition (1.4) for the FN-pair (3.4) implies that y is a solution of P2 (1.1).
We note that the equation in λ in the JM2-pair has one singularity only, an irregular

singularity at infinity, while the equation in ζ in the FN-pair has two singularities: a regular
singularity at ζ = 0 and an irregular singularity at infinity. It follows that there does not
exist an algebraic gauge transformation for generic values of the parameter α between these
systems.

Let us also mention one more difference between the JM2- and FN-pairs, namely, the
additional σ1-symmetry for solutions of the FN-pair,

Z(−ζ ) = iσ1Z(ζ )C, where C ∈ SL(2, C). (3.5)

3.3. The Harnad–Tracy–Widom pair

There also exists a third 2×2 matrix Fuchs–Garnier pair for P2, which was first given implicitly
by Harnad, Tracy and Widom in [6] in connection with random matrix theory. Explicitly, this
pair was presented by Kapaev and Hubert [11] and in connection with the symmetric form of
P2 by Noumi [13]. The HTW-pair may be written as

HTW :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dW

dμ
=

(
μ

(
0 1
0 0

)
+

(−y −(z + 2y2 + t)
1
2 y

)
+

1

2μ

(
θ 0
z −θ

))
W,

dW

dt
= −

(
μ

(
0 1
0 0

)
+

(−y 0
1
2 y

))
W,

(3.6)

where θ is a complex parameter. Compatibility of system (3.6) implies that the functions y

and z satisfy the following system of nonlinear ODEs:

dy

dt
= y2 + z +

t

2
,

dz

dt
= −2zy − θ. (3.7)

8
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Eliminating z from this system we find that the function y satisfies the second Painlevé
equation (1.1) with the parameter α = 1/2 − θ .

For completeness we recall the symmetric form of P2 [13]:

f ′
0 = −2qf0 + α0, f ′

1 = 2qf1 + α1, q ′ = 1
2 (f1 − f0),

where α0 = 1 − θ, α1 = θ , and the functions f0 = f0(t), f1 = f1(t) and q = q(t) in our
notation read

f0 = z + 2y2 + t, f1 = −z, q = −y,

so that the HTW-pair gets a natural parametrization in terms of the ‘symmetric variables’.

3.4. The Fabri transformation

The HTW-pair (3.6) and the FN-pair (3.4) are related via a special Fabri-type transformation
[11]:

Z(ζ, t) = G(ζ)W(μ, t), G(ζ ) = 1√
2

(
1 −1
1 1

)(
i

2ζ

)σ3/2

, μ = −2ζ 2. (3.8)

The function z in (3.6) is given by the equation z = y ′ − y2 − t
2 . The σ1-symmetry for Z (3.5)

follows from the Fabri transformation because of the identity7,

G(−ζ )G−1(ζ ) = iσ1.

3.5. Main result

Now we are ready to formulate the main result of this paper.

Theorem 3.1. The fundamental solution Y (λ, t) of the JM2-pair (3.1) is related to the
fundamental solution W(μ, t) of the HTW-pair (3.6) via the following integral transform:(−u/μ 0

0 2

)
μθ/2W(μ, t) =

∫
L

e−λ3/3+λ(μ−t/2)Y (λ, t) dλ, (3.9)

where the contour L is specified in appendix B. The inverse transformation is given by the
inverse Laplace transform.

The proof of this theorem is given in sections 4 and 5.

Corollary 3.2. The relation between the JM2- and FN-pairs can be obtained as a composition
of equations (3.8) and (3.9).

4. A 3 × 3 Fuchs–Garnier pair for P2

Proposition 4.1. The compatibility condition for the linear system,

JKT2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝−1 λ + y 0

0 − 1
2 λ

0 0 −1

⎞
⎠ d�

dλ
=

⎛
⎝z + 2y2 + t −1 − κ1 0

−y − 1
2z −1 − κ2

1 0 0

⎞
⎠ �,

d�

dt
=

⎛
⎝−λ 1

2z 1 + κ2

−1 y 0
0 − 1

2 −y

⎞
⎠ �,

(4.1)

7 Compare with the analogous derivation for P1 (2.7).
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where κj , j = 1, 2 are parameters, is governed by the following system of nonlinear equations:

dy

dt
= y2 + z +

t

2
,

dz

dt
= −2yz − (κ1 − κ2). (4.2)

Eliminating z from system (4.2) we find that the function y satisfies the second Painlevé
equation (1.1) with the parameter α = 1

2 − (κ1 − κ2).

Proof. The result follows from the Frobenius compatibility condition ∂t∂λ� = ∂λ∂t�. �

4.1. Reduction to the JM2-pair

Since the compatibility condition (4.2) depends on the parameters κ1 and κ2 only through their
difference, there is an additional degree of freedom in system (4.1). We will show that, by a
special choice of the parameters κ1, κ2, system (4.1) can be reduced to the JM2-pair.

Proposition 4.2. If κj = −1 for either j = 1 or j = 2 in system (4.1), then system (4.1) can
be reduced to the JM2-pair (3.1) plus a quadrature.

Proof. To prove this statement, we first note that the coefficient matrix on the right-hand side
of the λ equation in (4.1) has determinant (1 +κ1)(1 +κ2). Setting κj = −1 for either j = 1 or
j = 2 it follows that, upon diagonalizing the coefficient matrix, system (4.1) can be reduced
to a 2 × 2 matrix system plus a quadrature. To simplify the following calculation we note that
system (4.1) can be written in the following form:

d�

dλ
= −

⎛
⎝2λ2 + z + t −λz − yz − (1 + κ1) −2(1 + κ2)(λ + y)

2(λ − y) −z −2(1 + κ2)

1 0 0

⎞
⎠ �.

We present a proof only for a simpler case, κ2 = −1, which does not require the diagonalizing
procedure. It is the case we refer below in subsection 4.3. The case κ1 = −1 is not employed in
our work and left to the interested reader. So, we set κ2 = −1 and note that the third component
can be solved by the quadrature once the remaining two components are determined. The first
two components of � satisfy the following linear 2 × 2 matrix system:

dφ

dλ
= −

(
λ2

(
2 0
0 0

)
+ λ

(
0 −z

2 0

)
+

(
z + t −yz − (1 + κ1)

−2y −z

))
φ,

dφ

dt
= −1

2

(
λ

(
2 0
0 0

)
+

(
0 −z

2 −2y

))
φ, φ =

(
�1

�2

)
.

(4.3)

We now make a gauge transformation in system (4.3),

φ =
(

0 1
2

−u−1 0

)
χ, (4.4)

where the function u(t) is defined by u′ = −yu. The resulting system is given by

dχ

dλ
=

(
λ2

(
0 0
0 −2

)
+ λ

(
0 u

−2u−1z 0

)
+

(
z −uy

−2u−1(yz + 1 + κ1) −z − t

))
χ,

dχ

dt
= 1

2

(
λ

(
0 0
0 −2

)
+

(
0 u

−2u−1z 0

))
χ.

(4.5)

This system is gauge equivalent to the JM2-pair given in (3.1). To see this, we define the
parameter θ = (1 + κ1) and make the change of variables:

χ(λ, t) = e−(λ3/3+λt/2)Y (λ, t). �

10
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4.2. Reduction to the HTW-pair

Proposition 4.3. System (4.1) can be mapped to the HT W -pair (3.6) by the application of
the generalized Laplace transform:

�(μ, t) =
∫

L

eλμ�(λ, t) dλ, (4.6)

where the contour L is specified in appendix B.

Proof. We start the proof by writing system (4.1) in the following form:⎛
⎝−1 λ + y 0

0 − 1
2 λ

0 0 −1

⎞
⎠ d�

dλ
=

⎛
⎝z + 2y2 + t −1 − κ1 0

−y − 1
2z −1 − κ2

1 0 0

⎞
⎠ �,

d�

dt
=

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ λ

d�

dλ
+

⎛
⎝ 0 1

2z 1 + κ2

−1 y 0
0 − 1

2 −y

⎞
⎠ �.

(4.7)

Substituting (4.6) into (4.7), and assuming that the contour L can be chosen to eliminate any
remainder terms that arise from integration by parts, we find

dJKT3
2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ μ

d�

dμ
=

⎛
⎝μ − (z + 2y2 + t) −μy + κ1 0

y 1
2μ + 1

2z κ2

−1 0 μ

⎞
⎠ �,

d�

dt
=

⎛
⎝0 0 −1

0 0 0
0 0 0

⎞
⎠ μ

d�

dμ
+

⎛
⎝ 0 1

2z κ2

−1 y 0
0 − 1

2 −y

⎞
⎠ �.

(4.8)

In our terminology, system (4.8) is a degenerate secondary linearized Fuchs–Garnier pair for
P2. The third row of the μ equation in (4.8) gives the following relation between the elements
of the function �:

�1 = μ�3.

Using this relation to eliminate �1 from the above equations, we find that the remaining
components of � satisfy the following linear 2 × 2 matrix system:

dψ

dμ
=

(
μ

(
0 1
0 0

)
+

(−y −(z + 2y2 + t)
1
2 y

)
+

1

μ

(
κ1 0
1
2z κ2

))
ψ,

dψ

dt
= −

(
μ

(
0 1
0 0

)
+

(−y 0
1
2 y

))
ψ, ψ =

(
�2

�3

)
,

(4.9)

which is gauge equivalent to the HTW-pair given in (3.6). �

4.3. Integral transform between the JM2- and the HTW-pairs

In this section, we construct explicitly the integral transform which maps the 2 × 2 system of
Jimbo–Miwa into the 2 × 2 system of Harnad–Tracy–Widom.

Theorem 4.4. The function W(μ, t), which solves the HTW-pair given in (3.6), is related to
the function Y (λ, t), which solves the JM2-pair given in (3.1), via the integral transform (3.9).

11
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Proof. From proposition 4.2, we note that the function Y (λ, t) is related to the function φ(λ, t)

in system (4.3) via the gauge transformation:

φ(λ, t) =
(

0 1
2

−u−1 0

)
e−(λ3/3+λt/2)Y (λ, t).

Similarly, if we set κ2 = −1 and κ1 = θ − 1, then from proposition 4.3 we note that the
function W(μ, t) is related to the function ψ(μ, t) in system (4.9) via the following change
of variables:

ψ(μ, t) = μ−1+θ/2W(μ, t).

Finally, ψ(μ, t) is related to the function φ(λ, t) in (4.3) via the integral transform given in
(4.6) and a simple gauge transformation:(

0 μ

1 0

)
ψ(μ, t) =

∫
L

eλμφ(λ, t) dλ.

We then find (
0 μ

1 0

)
μ−1+θ/2W(μ, t) =

∫
L

eλμ

(
0 1

2
−u−1 0

)
e−(λ3/3+λt/2)Y (λ, t) dλ,

which simplifies to give (3.9). �

5. Alternate secondary linearization of the 2 × 2 Fuchs–Garnier pairs for P2

In section 4, we introduced a novel 3 × 3 matrix Fuchs–Garnier pair for the second Painlevé
equation P2; see system (4.1). One of the principal advantages of this 3 × 3 matrix system
was that it is linear with respect to the spectral parameter λ, i.e. it is a secondary linearization
of P2. In this section, we present an alternate secondary linearization of the 2 × 2 matrix
Fuchs–Garnier pairs for P2.

Proposition 5.1. The degenerate linear system

dJKT1
2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ d�

dλ
=

⎛
⎝−(z + t) λz + (yz + θ) 2λ

2y z 2
λ 0 1

⎞
⎠ �,

d�

dt
= 1

2

⎛
⎝ 0 z 2

−2 2y 0
0 −λz −2λ

⎞
⎠ �,

(5.1)

is reducible to the 2 × 2 matrix Fuchs–Garnier pair for P2 of Jimbo–Miwa.

Proof. From the third row in the λ equation in (5.1) we have the following relation between
elements of the function �:

�3 = λ�1.

Using this relation to eliminate �3 from system (5.1) we find that the remaining two
components satisfy the linear 2 × 2 matrix system given in (4.3) with θ = (1 + κ1). It
was shown in proposition 4.2 that this system is related to the JM2-pair via an elementary
gauge transformation. �

System (5.1) can be mapped to the HTW-pair. This fact is proved in the following
proposition.

12
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Proposition 5.2. System (5.1) can be mapped to the HTW-pair (3.6) by the application of the
generalized Laplace transform defined in (4.6).

Proof. System (5.1) is linear with respect to the spectral variable λ and so we can immediately
apply the Laplace transform in (4.6). The resulting degenerate 3 × 3 matrix system is given
by

dJKT2
2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝0 z 2

0 0 0
1 0 0

⎞
⎠ d�

dμ
=

⎛
⎝−μ + (z + t) −(yz + θ) 0

−2y −μ − z −2
0 0 −1

⎞
⎠ �,

d�

dt
= 1

2

⎛
⎝ 0 z 2

−2 2y 0
μ − (z + t) yz + θ 0

⎞
⎠ �.

(5.2)

In order to simplify the following calculation, we make a gauge transformation in system (5.2)
of the form

� =
⎛
⎝ 0 0 1

z−1 z−1 0
0 − 1

2 0

⎞
⎠ χ. (5.3)

The resulting system is given by⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ dχ

dμ
=

⎛
⎝−(y + θz−1) −(y + θz−1) −μ + (z + t)

−μ − z −μ −2yz

0 1
2 0

⎞
⎠ χ, (5.4a)

dχ

dt
=

⎛
⎝ 0 0 μ − 2z − t

−y − θz−1 −y − θz−1 −μ + z + t
1
2 0 0

⎞
⎠ χ. (5.4b)

The second row in equation (5.4a) implies a relation between the elements of the function χ :

χ2 = −χ1 − 1

μ
(zχ1 + 2yzχ3). (5.5)

Using this relation to eliminate χ2 from system (5.4) we find that the remaining two components
satisfy the following linear 2 × 2 matrix system:

dψ

dμ
=

(
μ

(
0 −1
0 0

)
+

(
0 z + t

− 1
2 0

)
+

1

μ

(
yz + θ 2yz(y + θz−1)

− 1
2z −yz

))
ψ,

dψ

dt
=

(
μ

(
0 1
0 0

)
+

(
0 −2z − t
1
2 0

))
ψ, ψ =

(
χ1

χ2

)
.

(5.6)

Making the gauge transformation,

ψ =
(−1 −2y

0 1

)
μθ/2W, (5.7)

in system (5.6) we get system (3.6). �

5.1. Alternate proof of theorem 4.4

Proof. From proposition 5.1 we note that the degenerate system (5.1) is reducible to the
JM2-pair (3.1), while from proposition 5.2 the degenerate system (5.4) is reducible to the

13
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HTW-pair (3.6). The function �(λ, t) in (5.1) is related to the function χ(μ, t) in (5.4) via
the following integral transform:⎛

⎝ 0 0 1
z−1 z−1 0
0 − 1

2 0

⎞
⎠ χ(μ, t) =

∫
L

eλμ�(λ, t) dλ.

The first two components of this expression give(
χ3(μ, t)

z−1
(
χ1(μ, t) + χ2(μ, t)

)) =
∫

L

eλμ

(
�1(λ, t)

�2(λ, t)

)
dλ.

Using relation (5.5) to eliminate χ2 from this expression, we find(
0 1

− 1
μ

− 2y

μ

)
ψ(μ, t) =

∫
L

eλμφ(λ, t) dλ,

where ψ = (χ1, χ3)
T and φ = (�1,�2)

T . From proposition 5.1, the function Y (λ, t) is
related to the function φ(λ, t) via the gauge transformation:

φ(λ, t) =
(

0 1
2

−u−1 0

)
e−(λ3/3+λt/2)Y (λ, t).

Similarly, from proposition 5.2, the function W(μ, t) is related to the function ψ(λ, t) in
system (5.6) via the gauge transform given in (5.7). Combining these two expressions we find(

0 1
− 1

μ
− 2y

μ

)(−1 −2y

0 1

)
μθ/2W(μ, t) =

∫
L

eλμ

(
0 1

2
−u−1 0

)
e−(λ3/3+λt/2)Y (λ, t) dλ,

which simplifies to give (3.9). �

Appendix A. On the matrix versions of the Garnier pair for P2

There are two matrix versions of the original scalar G2-pair: the JM2-pair and the Fuchs–
Garnier pair obtained by Conte and Musette [1], the CM2-pair. Since both pairs were obtained
by some simple transformations from the G2-pair they are equivalent and should be related
via a simple gauge transformation. However, in [9] there are no explicit details given of the
relation between the JM2- and G2-pairs and so, to complete our diagram in figure 2, we give
this relation here. In the work [1], one finds details of the derivation of the matrix CM2-pair
from the scalar G2-pair; however, it looks very much different from the matrix JM2-pair. To
establish their equivalence we present a direct transformation between the JM2- and CM2-pairs
avoiding the original ‘intermediate’ object G2-pair.

We begin with the relation between the JM2- and G2-pairs. Consider any column of the
fundamental matrix solution to system (3.1): Yk = (Yk1, Yk2)

T , k = 1, 2, then the function
V = V (λ, t) defined as Yk1 = √

u(λ − y)V , for any k, satisfies the original Garnier pair
for P2:

G2 :

⎧⎪⎪⎨
⎪⎪⎩

d2V

dλ2
=

(
3

4(λ − y)2
− y ′

λ − y
+ (y ′)2 + λ4 − y4 + t (λ2 − y2) + 2α(λ − y)

)
V,

dV

dt
= 1

2(λ − y)

dV

dλ
+

1

4(λ − y)2
V,

(A.1)

where α = 1
2 − θ .
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Thus we have shown that the JM2-pair gives a matrix representation of the scalar G2-
pair. Of course, different matrix representations are also possible and, in particular, we
discussed above the CM2-pair. Clearly, all these matrix representations are equivalent;
however, sometimes a direct explicit mapping between them is not immediately obvious.
The CM2-pair reads

CM2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dM

dλ
=

(
λ3

(
0 1
0 0

)
+ λ2

(
0 y

0 0

)
+ λ

(
0 y2 + t

1 0

)
+

(−y ′ y3 + ty + 2α

−y y ′

))
M,

dM

dt
=

(
λ2

2

(
0 1
0 0

)
+ λ

(
0 y

0 0

)
+

(
0 (3y2 + t)/2

1/2 0

))
M,

(A.2)

where y = y(t) is any solution of P2 (1.1) and y ′ = dy/dt .
To map this system directly into the JM2-pair given in (3.1) we introduce the parameter

θ and functions z = z(t), u = u(t) as follows:

θ = 1

2
− α, z = y ′ − y2 − t

2
,

du

dt
= −yu.

Then a relation between the fundamental solutions of (3.1), Y = Y (λ, t), and (A.2),
M = M(λ, t), is given by the following gauge transformation depending on the spectral
parameter:

M(λ, t) = G(λ, t)Y (λ, t), G(λ, t) =
(

λ + y 1
1 0

) (
u−1/2 0

0 u1/2

)
. (A.3)

Appendix B. Contour of integration in the generalized Laplace transform

Here we explain how to define the contour of integration in equation (3.9). In an analogous
way the reader can find the contour of integration in the Laplace transform for the Fuchs–
Garnier pairs for P1 considered in section 2 as well as contours of integration for the Laplace
transforms of the Fuchs–Garnier pairs for some other Painlevé equations considered in our
previous work [10].

We start with some remarks on notation. Let us denote the columns of the matrix X by
Xk = Xk, k = 1, 2, i.e., X = (X1, X2). We assume that X(λ) is an integrable function of
λ. The notation L in equation (3.9), as well as in the Laplace transform (2.3) considered in
section 2, is understood to mean a pair of contours of integration for each column Xk:

L = (L1,L2), so that
∫

L

X(λ) dλ =
(∫

L1
X1(λ) dλ,

∫
L2

X2(λ) dλ

)
. (B.1)

For brevity we call L simply the contour of integration. Assume that, for k = 1, 2, the 2 × 2
matrices Ck and the 2 × 2 diagonal matrices Dk are independent of λ. Then for any two
integrable 2 × 2 matrix functions Xk(λ) we have the following identity:∫

L

(C1X1(λ)D1 + C2X2(λ)D2) dλ = C1

∫
L

X1(λ) dλD1 + C2

∫
L

X2(λ) dλD2.

Let us now commence our analysis with a discussion of some general issues related to the
choice of the contour L in (3.9). On one hand, we need a closed contour of integration because
in sections 4 and 5 we assume vanishing of the certain off-integral terms that appear due to
the integration by parts. On the other hand, the integrand in (3.9) is an entire function of λ,
thus the contour of integration cannot be closed in the finite domain of the complex λ plane
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and should pass through the point at infinity, since we would like to get a nontrivial function
W(μ, t). This brings us immediately to the issues of convergence and conditions on L which
ensure that the integral does not vanish.

To cope with these two problems we have to consider in more detail the asymptotic
behaviour of the fundamental solutions of the JM2-pair. The main instruments for this are
the canonical solutions Yn(λ, t), n ∈ Z of the JM2-pair (3.1), which are defined (uniquely) by
their asymptotic expansion as λ → ∞:

Yn(λ, t) ∼
(

I + O
(

1

λ

))
exp((λ3/3 + λt/2 − θ log λ)σ3), (B.2)

where I is the identity matrix, and log λ = log|λ| + i arg λ, in the corresponding sectors

Sn =
{
λ :

π

6
+

π(n − 2)

3
< arg λ <

π

6
+

πn

3

}
.

The canonical solutions are related to each other by the Stokes matrices, Sn:

Yn+1(λ) = Yn(λ)Sn, S2k+1 =
(

1 s2k+1

0 1

)
, S2k =

(
1 0
s2k 1

)
,

where the numbers sn ∈ C are called the Stokes multipliers. Moreover,

Yn+6(λ e2π i) = Yn(λ) e−2π iθσ3 , n ∈ Z.

From the above definitions one can easily deduce that the Stokes matrices satisfy the so-called
cyclic relation, although this is not important in the following. We now find the leading term
of asymptotics of the integrand in (3.9) assuming that Y coincides with Yn:

Ŷn ≡ e−λ3/3+(μ−t/2)λYn(λ, t) ∼
λ→∞
λ∈Sn

(
λ−θ eλμ 0

0 λθ eλμ e−2λ3/3−tλ

)
. (B.3)

In the above asymptotics we have two exponential functions, namely, eλμ and e−2λ3/3−tλ. The
contour of integration should be chosen such that both exponents should vanish as |λ| → ∞.
We make the ‘Laplace exponent’, eλμ, small as |λ| → ∞ by demanding that Re λμ < 0.
Since the contour has two directions as |λ| → ∞ we get two conditions on μ. To satisfy
both conditions we must have the angle between these directions less than π . The directions
themselves are chosen such that the second exponent, e−2λ3/3−tλ, decays. It can be any
directions inside of the following sectors: S2k ∩S2k+1, k ∈ Z. To achieve a better convergence
the contour can be chosen asymptotic to the rays {λ : arg λ = 2πn/3, n ∈ Z}.

We have to take care that integrating a fundamental solution Y (λ, t) in equation (3.9)
we arrive at some fundamental solution W(μ, t). This means that, between the asymptotic
directions of our contour, an arch of circle centered at the origin and having a large radius
should cross a Stokes ray where the corresponding column of the fundamental solution Y (λ, t)

is affected by the Stokes phenomenon. If this condition is not satisfied then the column vector
will be exponentially vanishing on that circle (as the radius enlarges to infinity) and, by the
Cauchy theorem, the integral of that column taken along the contour also vanishes. In fact,
this condition actually means that the above-mentioned arch intersects two Stokes rays of
the matrix solution. In the sector between these Stokes rays our column is unbounded as
|λ| → ∞, so that the Cauchy theorem does not apply. Strictly speaking, after we choose
the contour we also have to prove that we obtain the fundamental solution W(μ, t) by, say,
calculating its asymptotics as μ → ∞.8

8 This calculation should be obvious for the experienced reader, we omit it here.
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Now we apply the above principle to construct the contour L in (3.9). Consider, for
example, the canonical solution Y2k, k ∈ Z. The reader can check that defining contour
L = Lk with L1

k = L2
k = Lk , where Lk is defined as any smooth simple9 curve asymptotic to

the rays Rε
2k+1 and Rε

2k+2, where

Rε
n :=

{
λ : arg λ = −π

6
+

πn

3
+ (−1)nε

}
, n ∈ Z and 0 < ε < π/3,

fits all the conditions indicated in the above paragraphs, provided that the following condition
is imposed on μ:

π

3
− 2πk

3
+ ε < arg μ < π − 2πk

3
− ε. (B.4)

This condition comes from imposing the exponential decay condition, π/2 < arg λμ < 3π/2,
for asymptotics of Ŷ2k on the rays Rε

2k+1 and Rε
2k+2. Note that the asymptotics on Rε

2k+1 is given
by equation (B.3) for n = 2k, while on Rε

2k+2 the Stokes phenomenon dictates the following
leading term of asymptotics for Ŷ2k:

Ŷ2k ∼
λ→∞

(
λ−θ eλμ 0

0 λθ eλμ e−2λ3/3−tλ

) (
1 + s2ks2k+1 −s2k+1

−s2k 1

)
.

With this choice of the contour L in (3.9) we construct the function W(μ) for all values of
μ except the rays, μ : arg μ 
= π(1 + 2k)/3, k ∈ Z. On the latter rays W(μ) can be obtained
via the analytic continuation. We can, also, obtain W(μ) on these rays by a proper choice of
the contour L. In the latter case, it splits into the two contours (B.1).

For example, assume arg μ = π . Construct the following solution Y = (
Y 2

2 , Y 2
4

)
, where

Y 2
2 and Y 2

4 are the second columns of the canonical solutions Y2 and Y4, respectively. The
function Y is a fundamental solution of system (3.1), iff s3 
= 0. Consider now the following
anti-Stokes rays10:

Rn := {λ : arg λ0 = 2nπ/3}, n = 0, 1, 2.

Now we can define the contour L = (L1,L2) in (3.9) where for k = 1, 2,Lk is any smooth
simple9 curve with two asymptotic rays Rk and R0.
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